Optimization of the first eigenvalue in problems involving the $p$-Laplacian

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE OPTIMIZATION OF EIGENVALUE PROBLEMS INVOLVING THE p-LAPLACIAN

Given a bounded domain Ω ⊂ R and numbers p > 1, α ≥ 0, A ∈ [0, |Ω|], consider the following optimization problem: find a subset D ⊂ Ω, of measure A, for which the first eigenvalue of the operator −∆p + αχD φp with the Dirichlet boundary condition is as small as possible. We prove the existence of optimal solutions and study their qualitative properties. We also obtain the radial symmetry of opt...

متن کامل

Optimization of the First Eigenvalue in Problems Involving the Bi–laplacian

This paper concerns minimization and maximization of the first eigenvalue in problems involving the bi-Laplacian under Dirichlet boundary conditions. Physically, in case of N = 2 , our equation models the vibration of a non homogeneous plate Ω which is clamped along the boundary. Given several materials (with different densities) of total extension |Ω| , we investigate the location of these mat...

متن کامل

MULTIPLICITY RESULTS FOR p-SUBLINEAR p-LAPLACIAN PROBLEMS INVOLVING INDEFINITE EIGENVALUE PROBLEMS VIA MORSE THEORY

We establish some multiplicity results for a class of p-sublinear pLaplacian problems involving indefinite eigenvalue problems using Morse theory.

متن کامل

STEKLOV PROBLEMS INVOLVING THE p(x)-LAPLACIAN

Under suitable assumptions on the potential of the nonlinearity, we study the existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplacian. Our approach is based on variational methods.

متن کامل

EIGENVALUE PROBLEMS WITH p-LAPLACIAN OPERATORS

In this article, we study eigenvalue problems with the p-Laplacian operator: −(|y′|p−2y′)′ = (p− 1)(λρ(x)− q(x))|y|p−2y on (0, πp), where p > 1 and πp ≡ 2π/(p sin(π/p)). We show that if ρ ≡ 1 and q is singlewell with transition point a = πp/2, then the second Neumann eigenvalue is greater than or equal to the first Dirichlet eigenvalue; the equality holds if and only if q is constant. The same ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2008

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-08-09769-4